Zephyr Water Utility District Preliminary Engineering Report (PER)

HDR Engineering, Inc. and Douglas County Public Works

March 09, 2017

Overview

- 1. Why are we here?
- 2. What is a Preliminary Engineering Report (PER)?
- 3. Need for Capital Improvements
- 4. Project Alternatives
- 5. Prioritized Recommendations
- 6. Short-term, Mid-term and Long-term Implementation Recommendations
- 7. Questions & Break Out Stations

Why are we here?

- October 16, 2014
 - Adopted Resolution No. 2014R-081 establishing water rates for the Zephyr Water Utility District Water System
 - Allow time to complete Preliminary Engineering Reports and develop a financing plan to implement future capital improvements
- January 15, 2015 County awarded a contract with HDR Engineering to prepare Preliminary Engineering Reports
 - Zephyr Water Utility District, March 9, 2017
 - Cave Rock and Skyland, March 21, 2017
 - Uppaway, April 4, 2017
- Present information on the PER findings and recommendations

What is a Preliminary Engineering Report (PER)?

- Outline Follows USDA Bulletin 1780-2
 - Identify water system deficiencies
 - Develop and compare project alternatives to address those deficiencies
 - Identify and evaluate environmental impacts of the project alternatives
 - Prioritize recommended projects
 - Provide preliminary costs

PER - Need for Capital Improvements

- Deficiencies 1-8 Fire Flow, Pressure, Velocity, Line Size Criteria and Line Leaks
- Deficiency 9 Storage Tank Coating Condition
- Deficiency 10 Supply Redundancy
- Deficiency 11 Water Conservation
- Deficiency 12 Lake Pump Station Intake Prime
- Deficiency 13 Marla Bay Pump Station Piping Corrosion
- Deficiency 14 Water Treatment Plant Electrical
- Deficiency 15 Water Treatment Plant Controls/SCADA
- Deficiency 16 Unstable Hypochlorite Residual

Deficiencies 1 – 8 Fire Flow, Pressure, Velocity ...

- NAC 445A.6673 Existing systems: Evaluation, justification and design of proposed water project
 - 2. Designed on the basis of historical data or other representative data that complies with accepted engineering judgment and practice, in such a manner that the proposed water project will **enable the public** water system to meet average day demand, maximum day demand, peak hour demand and requirements for fire flow and fire demand.

Fire Flow Requirements

- International Fire Code (IFC) Table B105.1
 - -Building Size and Construction

- Fire Flow Calculation Area

3,601 - 4,800 sf 1,750 gpm, 2 hours

4,801 - 6,200 sf 2,000 gpm, 2 hours

6,201 – 7,700 sf 2,250 gpm, 2 hours

11,301 – 13,400 sf 3,000 gpm, 3 hours

Fire Flow Requirements by Parcel

Fire Flow Deficiencies

Peak Hour Pressure Deficiencies

Average Day Demand Pressure Deficiencies

Leak Repairs (through Sept. 2016)

Deficiency 9 – Storage Tank Coating

Inlet/Outlet

Ceiling

Deficiency 10 – Water Supply Redundancy

- Single Source of Water
- NAC 445A.6678 Requires a Backup Source

Deficiency 11 – Water Conservation

- Just 8% of services are Metered
- NRS 540.131 Requires a Water Conservation Plan
 - "Metering of all water services is an essential element of a water conservation plan."

Deficiencies 12-16 Lake Pump Station and WTP

- Lake Pump Station
 - Loss of Intake Prime
 - Reduced Pump Flow
 - Failing Coatings
- WTP
 - Aging Electrical and SCADA/Controls

Unstable Hypochlorite Residual

Deficiencies 1-8 Alternative 1

Deficiencies 1-8 Alternative 2

Deficiencies 1-8 Alternative 3

Douglas County Public Works

• Lookout & Riven Rock Dr Booster Pumps

7 Pressure Zones, No New PRVs

Approx. Capital Cost - \$10.7 M

Alternative Ranking Criteria

- Implementation (20%)
 - Is the alternative feasible to implement?
 - Is the alternative constructible?
- Reliability (25%)
 - Will the alternative provide reliable results?
- Operation /Maintenance (40%)
 - Does the alternative require a large operator time commitment?
 - Does it require ongoing contract maintenance?
- Environmental / Permitting (15%)
 - Can TRPA thresholds be met?
 - Are there short-term and long-term effects on the environment?
 - Will the alternative be difficult to permit?

Alternative Ranking Summary

Deficiency	Alternative	Score	Rank
1 – 8 Fire Flow, Pressure	1 – New Tank, Inspiration & Lookout Dr. Boosters, 7 PressureZones	2.4	3
1 – 8 Fire Flow, Pressure	2 – New Tank, High Pressure WTP Booster, Lookout Dr.Booster, 11 Pressure Zones	2.3	2
1 – 8 Fire Flow, Pressure	3 – Riven Rock Dr. Booster, Lookout Dr. Fire & Booster, 6 Pressure Zones	2.0	1
12 – Loss of Intake Prime	1 – Self Priming Pumps	1.0	1
12 – Loss of Intake Prime	2 – Submersible Pumps	2.9	2
16 – Unstable Hypochlorite Residual	1 – Move Injection Point	0.9	1
16 – Unstable Hypochlorite Residual	2 – Mechanical Mixer	1.4	2

Project Priorities

- Priority 1
 - Address public health and safety risks.
- Priority 2
 - Address temporary disruption of water service or compliance, but generally minimal public health and safety impacts.
- Priority 3
 - Increase operational efficiencies, but are not likely to cause loss or disruption of service or compliance.
- Priority 4 Projects
 - Provide further gains in efficiency from Priority 3, but are not needed for operations.
 - Represent "wants" more than "needs".

Project Priority Summary and Costs

Table 7-1. Project Priority Summary and Costs

Deficiency No.	Description	Priority	Recommended Alternative	Capital Cost (x\$1,000)
1-4	Fire Flow, & Pressure Criteria	1	3 - Fire & Booster Pumps	\$1,643
8	Line Leaks	2	Replace Lines	\$195
14	WTP Electrical	2	Surge Protection & UPS	\$66
15	WTP SCADA & Controls	2	UPS & SCADA PAK & SCADA LOG	\$124
16	Unstable Hypochlorite Residual	2	1 - Dose Pace & Move Injection Point	\$28
12	Lake Intake Prime	3	1 - Self-Priming Pumps	\$143
9	Storage Tank Coating	3	Recoat Tank	\$358
11	Water Conservation	3	Water Meters & Dedicated Services	\$1,563
10	Water Supply Redundancy	4	Cave Rock Intertie & Booster Station	\$1,723
13	MBPS Piping & Building Coatings	4	Recoat Piping & Building	\$29
5, 6	Max Velocity Criteria	4	Upsize Lines	\$8,239
			Total	\$14,111

Line Replacements & Fire/Booster Pumps

Short-term Implementation Recommendations

					Est	imated Monthly	Rate	per Customer
Deficiency No.	Recommended Alternative	Priority		Capital Cost	SR	F Loan (20 yrs)	USD	A Loan (40 yrs)
8	Line Leaks	2	\$	195,000	\$	2.07	\$	1.55
14	WTP Electrical	2	\$	66,000	\$	0.70	\$	0.53
15	WTP SCADA & Controls	2	\$	124,000	\$	1.32	\$	0.99
16	Unstable Hypochlorite Residual	2	\$	28,000	\$	0.30	\$	0.22
11	Water Conservation - Dedicated Water Services	3	\$	366,563	\$	3.89	\$	2.92
13	MBPS Piping & Building Coatings	4	\$	29,000	\$	0.31	\$	0.23
5, 6	Max Velocity Criteria - Lake View Drive, Jerry and Don Water Lines	4	\$	1,105,000	\$	11.72	\$	8.81
Total			\$		\$	20.30	\$	15.26
			A	vailable Monthly Debt		(15.73)	\$	(15.73)
				Annual Debt to Finance	\$	4.57	\$	(0.47)
Notes:								

^{1.} Deficiency 13 - MBPS Piping & Building Coatings at a cost of \$29,000 to be paid for out of the operating budget

Short-term Implementation Recommendations

Medium-term Implementation Recommendations

				Estimated Monthly Rate per Customer			
Deficiency No.	Recommended Alternative	Priority	Capital Cost	SRF Loan (20 yrs)	USDA Loan (40 yrs)		
12	Lake Intake Prime	3	\$ 143,000	\$ 1.52	\$ 1.14		
9	Storage Tank Coating	3	\$ 358,000	\$ 3.80	\$ 2.85		
Total			\$ 501,000	\$ 5.31	\$ 3.99		

Long-term Implementation Recommendations

				Monthly Rate per Customer		
Deficiency No.	Recommended Alternative	Priority	Capital Cost	SRF Loan	USDA Loan	
1-4	Fire Flow, & Pressure Criteria	1	\$ 1,643,000	\$ 17.43	\$ 13.10	
11	Water Conservation - Meters	3	\$ 1,196,437	\$ 12.69	\$ 9.54	
10	Water Supply Redundancy	4	\$ 1,723,000	\$ 18.28	\$ 13.74	
5, 6	Max Velocity Criteria (Not including Lake View Drive, Don and Jerry)	4	\$ 7,134,000	\$ 75.68	\$ 56.89	
Total			\$ 11,696,437	\$ 124.08	\$ 93.27	

Questions & Break Out Stations

- Distribution System & WTP
- Fire Flows
- Financial

Public Comments

Written comments can be submitted to:

publicworks@douglasnv.us

ZWUD PER Available on Public Works website at:

http://www.douglascountynv.gov/DocumentCenter/View/5931

- Ron Roman
 - **775-782-6239**
 - rroman@douglasnv.us

